

Synthesis and Electronic Spectral Characteristics of Some New Azo Merocyanine Dyes

Srinivasan Rajagopal* & Erwin Buncel†

Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6

(Received 3 April 1991; accepted 14 May 1991

The synthesis of new solvatochromic azo merocyanine dyes (1-6) is described. The preparations involve coupling of 4-aminopyridine with appropriate phenols and subsequent methylation by methyl iodide. N-Methylbenzothiazolylazo-4'-benzoquinone (3) and N-methylbenzothiazolylazo-(3',5'-diphenyl)-4'-benzoquinone (4) were synthesised by coupling with phenols. In an alternative route, N-methylbenzothiazolinone hydrochloride (MBTH) was converted via the sulphonyl hydrazone to the azo sulphone, followed by coupling with various phenols to yield 3 and 4. Naphthoquinones were coupled to MBTH to give N-methylbenzothiazolyl-4'-naphthoquinone (5) and N-methylbenzothiazolyl-2'-naphthoquinone (6). The UV-Vis spectra of the six dyes (1 to 6) were recorded in 29 solvents and their λ_{max} values and molar extinction coefficients (ϵ) are presented. The effect of structural change on the electronic spectra, on replacement of the —CH—CH— bridge by —N=N— in merocyanines, is discussed.

1 INTRODUCTION

Merocyanine dyes are an important class of compounds due to their diverse applications in various fields, such as neurophysiology, 1,2 electro-chromism, 3 nonlinear optics, 4 new material technology, 5-8 solvato-chromism 9,10 and photochromism. 11

^{*} Present address: McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada H3A 2B4.

[†] Author to whom correspondence should be addressed.

Scheme 1. 4-Aminopyridine is coupled with phenols to form 1a and 2a, which on methylation give 1 and 2. MBTH is coupled with various phenols to give products 3-6.

Solvatochromism is manifested as a pronounced change in the position, intensity, and shape of an absorption band when a solute is dissolved in solvents of varying polarity. A bathochromic (red) shift and a hypsochromic (blue) shift with increasing polarity are called positive and negative solvatochromism, respectively. A change from bathochromic to hypsochromic, or vice versa, with increase in solvent polarity, is termed reverse solvatochromism. Studies on solvatochromism of merocyanines have mostly focused on stilbazolium-type dyes.¹²⁻¹⁶

We report here the electronic spectral data of the merocyanine dyes 1–6. Recently we reported a new solvent polarity scale, the $\pi_{\rm azo}^*$ scale, based on the averaged spectral characteristics of the new azo merocyanine dyes in different solvents.¹⁷ We also reported interesting spectral behaviour concerning a reverse solvatochromism of these dyes.¹⁸ We now report the syntheses and electronic spectral characteristics of these azo merocyanine

Scheme 2. MBTH is converted to sulphonyl hydrazone 4a to give azo sulphone 4b. Azo sulphone is then coupled with 2,6-diphenylphenol to give 4.

Scheme 3. MBTH is coupled with quinones to give products 3 and 5.

dyes. The present studies form an extension of our previous studies on azo and azoxy dyes. 19-27

Compounds 1 and 2 were prepared by coupling 4-aminopyridine with appropriate phenols to give pyridylazophenols which were subsequently methylated using methyl iodide as outlined in Scheme 1. Compounds 3–6 were synthesised via two pathways, Schemes 1–3. N-Methylbenzothiazolinone hydrochloride (MBTH) was coupled with phenols (1:10) to yield N-methylbenzothiazolyl phenols (Scheme 1). In a different pathway, MBTH was converted via the sulphonyl hydrazone to the azo sulphone, which was subsequently coupled with different phenols (1:1) to give the desired products. Scheme 3 shows the coupling of quinones to MBTH to yield compounds 3 and 5.

Preparation of compounds 1, 3, 5 and 6 was based on literature reports.²⁸ The new azo merocyanines 2a, 2, 4a, 4 were synthesised using modified methods.

2 EXPERIMENTAL

2.1 General

N-Methylbenzothiazolinone hydrazone hydrochloride (MBTH) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone urea (DMPU) from Fluka were used without purification. Pyridine derivatives, phenols and quinones were obtained from Aldrich Chemical Co. Silica gel chromatogram plates (Kodak 13181 coated with fluorescent indicator) were used for thin layer chromatography (TLC). Precoated TLC plates (silica $60 \, \mu \text{m}$ without fluorescent indicator, 0.25 mm thickness) from BDH were used for preparative TLC. BDH silica $60 \, \mu \text{m}$, 230–400 mesh ASTM, was used for liquid chromatography (LC). Prepacked columns (240 mm, 310 mm and 440 mm; 40–63 μm) were for used medium-pressure liquid chromatography

(MPLC) (1400–2100 kPa). Elemental analyses were performed by the Canadian Microanalytical Service (2a, 4, 6), Guelph Laboratories (3), and Galbraith Laboratories Inc. (2). Melting points were determined on a Fisher–Jones apparatus and are reported uncorrected in degrees Celsius (°C).

2.2 4-(p-Hydroxyphenylazo)pyridine (1a)

A solution of NaNO₂ (8·0 g) in H₂O (40 ml) was added to freshly distilled phenol (12·0 g) in 10% aq. NaOH (90 ml) and cooled to 0°C. The resulting solution was added slowly with stirring to a solution of 4-aminopyridine (12·0 g) in aq. HCl (50 ml conc. HCl in 32 ml H₂O). Following the addition, the pH was adjusted to 6, the precipitate was filtered and recrystallised from ethanol to give reddish yellow crystals of 1a, yield 23%, m.p. $256-257^{\circ}$ (dec.), lit. m.p. $252-253^{\circ}$ C. $29,30^{\circ}$

2.3 4-N-Methyl-(4'-hydrazobenzoquinone)pyridone (1)

4'-Hydroxyphenylazopyridine (1a) (1·0 g, 5 mmol) was dissolved in 150 ml N,N-dimethylacetamide (freshly distilled), methyl iodide (4·1 g, 30 mmol) was added and the mixture was stirred at 40°C for 2 days. The reaction was followed spectrophotometrically and by TLC. After 2 days, the reaction mixture was concentrated to 40 ml and product was precipitated with 50 ml water. The precipitate (1·0 g) was dissolved in alkaline ethanol (65 ml 10% NaOH/65 ml EtOH) and extracted with chloroform using a continuous extractor. The pink aqueous layer slowly turned pale as the chloroform layer became intense purple. The organic layer was concentrated and the product mixture was separated by column chromatography with MeOH/CHCl₃ (5:1, v/v). The column showed five well separated zones: yellow ring, brown band, reddish orange ring, purple zone and a faint yellow ring. The purple band was separated, concentrated and recrystallised from toluene to give 1, yield 27%, m.p. 215-216°, lit. m.p. 218°C.³¹

2.4 4-(4'-Hydroxy-3',5'-diphenyl)phenylazopyridine (2a)

A solution of 10 g (40 mmol) of 2,6-diphenylphenol in 1 liter of ethanol and a solution of 10 g borax and 34 g NaOH in 500 ml water were combined (solution A) and kept at 0°C. Then, sodium nitrite (2 g; Analar) in 10 ml water and 2.87 g (30 mmol) of 4-aminopyridine (freshly recrystallised from hot toluene) in 4m-HCl (45 ml) were mixed quickly at 0°C (20 s). After 30 s stirring, the mixture was quickly poured into solution A resulting in a bright red mixture (Solution B). Solution B was acidified to pH 6. At this pH, the solution turned turbid yellow with the formation of a yellow precipitate. The

precipitate was filtered and recrystallised from hot toluene with the aid of decolourising carbon. The product obtained was a reddish orange powder of (4'-hydroxy-3',5'-diphenyl)phenylazopyridine (2a), yield 22%, |m.p.|270-272°.

Calcd for C₂₃H₁₇N₃O: C, 78·63; H, 4·84; N, 11·97. Found: C, 78·57; H, 4·94; N, 11·47%.

2.5 4-N-Methyl(4'-hydrazo-3',5'-diphenylbenzoquinone)pyridone (2)

Freshly distilled N,N-dimethylacetamide (150 ml) was preheated to 38–40°C and 4-(4'-hydroxy-3',5'-diphenyl)phenylazopyridine (2a) (1.0 g, 5 mmol) was added and the mixture stirred until all the substance dissolved. Freshly distilled MeI (2.0 g) was added and the reaction mixture was stirred for 4 days at 38-40°C. The reaction was monitored spectrophotometrically and by TLC. The reaction mixture was concentrated to 40 ml. Addition of 50 ml distilled water resulted in a greyish brown precipitate which was filtered (1.2 g). This precipitate was dissolved in an alkaline ethanol solution (75 ml 10% NaOH and 100 ml ethanol) by agitating for one day. The product from the aqueous solution was extracted into chloroform using a liquid-liquid extractor by downward displacement. This extraction took 3 days to complete during which time the purple-coloured aqueous solution turned pale and the organic solution (chloroform) turned bright purple. The chloroform extract was passed down a column of silica and the purple zone (sixth from the bottom of the column) was eluted with MeOH/CHCl₃ (3:5, v/v). This purple solution was then concentrated to 1 ml and further separated using HPLC. The eluting solvent mixture used was ethanol/ toluene (3:5, v/v). The chromatogram nicely separated into four distinct bands: brown, orange, purple and yellow. The purple band was eluted and concentrated to give a bluish grey powder. The product was purified by dissolving in toluene (0.5-1 ml) and triturating with petroleum ether (0.5-1 ml), which afforded a shiny bluish brown powder of 2, yield 6%, m.p. 278-280°.

> Calcd for C₂₄H₁₉N₃O: C, 78·87; H, 5·24; N, 11·50. Found: C, 78·71; H, 5·05; N, 10·97%.

2.6 N-Methylbenzothiazolylazo-4'-benzoquinone (3)

This compound was prepared in two ways (Schemes 1 and 3).

2.6.1 Method 1

MBTH was coupled with phenol via oxidative coupling under nitrogen. A flask equipped with a nitrogen inlet was charged with 38 mg (175 μ mol) of MBTH in 10 ml 50% methanol, 1·25 g (10 mmol) of freshly distilled phenol

in 15 ml 50% methanol and 30 ml of 9·2 Universal buffer solution (50 ml 0·025 m-Na₂B₄O₇. 10H₂O, 0·9 ml 0·1m-NaOH, and 49·1 ml distilled water). Aqueous solution (100 ml) containing 845 mg (2 mmol) K₄Fe(CN)₆ and 6·92 g (20 mmol) K₃Fe(CN)₆ was added slowly. The reaction solution turned raspberry-red in colour. After 30 min, the reaction mixture was treated with 100 ml of chloroform. The desired product was extracted into the chloroform layer which was rotary-evaporated *in vacuo*. The residue was recrystallised from *n*-amyl alcohol giving purple needles of 3, yield 27%, m.p. 228–230°, lit. m.p. 229–230°C.³²

2.6.2 Method 2

MBTH was coupled with 1,4-benzoquinone directly. 216 mg (3 mmol) of freshly recrystallised p-benzoquinone (from petroleum ether) in 15 ml water and 696 mg (3·2 mmol) of MBTH in 10–20 ml $\rm H_2O$ were combined in a 125 ml Erlenmeyer flask which was wrapped in aluminium foil and kept for 24 h at room temperature. A purple-coloured precipitate was formed which was filtered and recrystallised from 35 ml hot amyl alcohol to give purple-coloured needles of 3, 61% yield, m.p. 228–230°, lit. m.p. 230–231°C. 33

Calcd for C₁₄H₁₁N₃OS: C, 62·41; H, 4·12; N, 15·60; S, 11·91. Found: C, 62·83; H, 4·56; N, 15·50; S, 11·17%.

2.7 N-Methylbenzothiazolylazo-(3',5'-diphenyl)-4'-benzoquinone (4)

This compound was prepared via two methods. In method 1 (Scheme 2), MBTH was first converted to azo sulphone (4b) via the sulphonyl hydrazone (4a). Subsequently, in step 3, the azo sulphone was coupled to 2,6-diphenylphenol to give the desired product (4).

2.7.1 Method 1: via azo sulphone

Step 1: formation of sulphonyl hydrazone (4a). To a stirred mixture of MBTH (1·46 g) in 10 ml N-methylpyrrolidone (NMP), ZnO (0·3 g) and benzenesulphonyl chloride (1·5 g) in 25 ml NMP were added under a nitrogen atmosphere and the mixture was heated for 90 min at 90–100°C. The reaction mixture, which was turbid white before heating, turned yellow and finally reddish brown during the course of reaction. The reaction mixture was acidified to pH 5, when precipitation occurred. The precipitate was filtered and purified by dissolving in alkaline methanol and reprecipitating with conc. HCl to pH 5. The reaction yielded 23% of a brown product, 4a, m.p. 220–221°, lit. m.p. 220–221°C.³⁴

Step 2: formation of azo sulphone 4b from sulphonyl hydrazone (4a). The sulphonyl hydrazone (4a) (150 mg) was stirred into a solution containing

10–20 ml H₂O and aqueous fluoroboric acid (8 ml 45% HBF₄ in 10 ml H₂O) and the mixture stirred for 20 min to ensure dissolution of **4a**. Pb(OAc)₄ (1·0 g) in 15 ml glacial acetic acid was added to the reaction mixture and the solution immediately turned brown. Concentrated HNO₃ (20 ml) was added slowly dropwise into the reaction mixture. The reaction vessel was kept in an ice—water bath during the addition of HNO₃. The mixture was stirred for 15 min and diluted with 20–30 ml water during which a brown–yellow precipitate was formed. The precipitate was filtered, washed with 5 ml aq. HBF₄, dried *in vacuo* and purified by dissolving 25 ml acetonitrile and triturating with 15–20 ml diethyl ether. The reaction yielded 92 mg (61%) of a bright yellow powder, the azo sulphone **4b**, m.p. 182–184°, lit. m.p. 182–185°C.³⁴

Step 3: coupling of azo sulphone (4b) with 2,6-diphenylphenol. The azo sulphone (4b) (400 mg; 1 mmol), and 2,6-diphenylphenol (500 mg; 2 mmol) were dissolved in a mixture of 40 ml acetone and 10 ml 2m-NaOH. The solution turned from yellow to purple. The solution was boiled for 10 min during which time a pink precipitate was formed. The precipitate was filtered and recrystallised from 50 ml hot chlorobenzene to give purple crystals of 4 (20%), m.p. 320–322°.

2.7.2 Method 2: oxidative coupling of MBTH with 2,6-diphenylphenol A solution of K₃Fe(CN)₆, 7.73 g (11 mmol), in 100 ml (50%) aqueous methanol (solution A) and 10 ml 25% NH₄OH (solution B) were prepared separately. Solutions A and B were added to a mixture of 1.42 g (6 mmol) MBTH and 5.0 g (6 mmol) 2,6-diphenylphenol in 100 ml 70% methanol. On gentle warming a bright red precipitate was formed. On dilution with 250 ml water, the amount of precipitation increased. After 15 min the solution was filtered and the precipitate was dried *in vacuo*. The dried precipitate was recrystallised with 200–250 ml hot chlorobenzene yielding purple crystals of 4 (1.35 g; 62%), m.p. 319–321°.

Calcd for C₂₆H₁₉N₃OS: C, 74·08; H, 4·55; N, 9·97; S, 7·60 Found: C, 73·73; H, 4·52; N, 9·89; S, 8·13%.

2.7.3 N-Methylbenzothiazolyl-4'-naphthoquinone (5)

The synthesis was carried out as described above but substituting 0.81 g $(5 \text{ mmol}) \alpha$ -naphthol for 2,6-diphenylphenol. The final precipitate (2.0 g) was recrystallised from 150–200 ml hot glycol monomethyl ether to give a red powder, 5 (60 mg, 33%), m.p. 260–270°, lit. m.p. 274°C.³²

2.7.4 N-Methylbenzothiazolyl-2'-naphthoquinone (6)

As described above, $0.80 \,\mathrm{g}$ (5 mmol) of β -naphthol was used to prepare the

title compound. The dried precipitate was recrystallised from 200–250 ml hot chlorobenzene to give 50 mg (32% yield) of 6, m.p. 243–245°, lit. m.p. 243–245°C 32

Calcd for C₁₈H₁₃N₃OS: C, 67·71; H, 4·07; N, 13·16; S, 10·03. Found: C, 67·26; H, 4·08; N, 13·08; S, 9·69%.

2.8 UV-Vis studies

The solvents used were of spectrometric grade quality whenever possible. The following spectrometric solvents were used without further purification: hexanes, chlorobenzene, ethyl acetate, monoglyme, methyl acetate, ethyl acetate, 1,2-dichloromethane, benzonitrile, N,N-dimethylacetamide, N,N-dimethylformamide, 1-propanol, and 1,4-dioxane (Aldrich Chemical Co.); toluene, benzene, chloroform, 2-butanone, acetone, dimethyl sulphoxide, acetonitrile, methanol, ethanol and cyclohexane (BDH Chemicals). Diethyl ether, nitrobenzene, pyridine, and nitromethane (Aldrich) were distilled before use. Hexamethylphosphoramide (HMPA) and N,N-(dimethylpropylene)urea (DMPU, Fluka) were used without further purification.

The above solvents were chosen from a broad spectrum ranging from 32.6 to 63.1 in their $E_{\rm T}$ scale (Dimroth and Reichardt's solvent polarity scale) and grouped into three sets as follows: set 1 ($E_{\rm T}$ 30–40) solvents 0–10; set 2 ($E_{\rm T}$ 41–50); set 3 ($E_{\rm T}$ 51–65), solvents 23–27.

Due to the varying solubility of the azo merocyanines 1-6 in the above solvents, a cosolvent was chosen in each set to prepare stock solutions: chloroform in set 1, acetone in set 2, and ethanol in set 3. Aliquots of $5 \mu l$ of the stock solution (10 mm) were added to $2.0 \, ml$ of solvent placed in a quartz cuvette and the UV-Vis spectra were scanned over the range $320-780 \, mm$ using a Perkin-Elmer Lambda 5 spectrophotometer equipped with a thermostated cell holder. The presence of the cosolvent (0.25%) did not alter the spectra detectably. The spectrometer was routinely calibrated and checked for wavelength accuracy by means of holmium and didymium filters before and after measurements. All spectral measurements were performed at $25^{\circ}C$.

3 RESULTS AND DISCUSSION

3.1 Synthetic procedures

The synthesis of azo merocynanine dyes was successful though yields were not high (20-50%) due to the formation of several side products of unknown identity. Fortunately most of the components in a product mixture showed

well-separated brightly coloured bands on a liquid column chromatogram. The azo merocyanines were generally isolated from purple or dark blue bands under the experimental conditions used.

The coupling reaction of 1,4-benzoquinone with MBTH (Scheme 3) resulted in higher yield of the desired product 3 than the oxidative coupling reaction of phenol to MBTH (Scheme 1). Based on the experimental method and yield, oxidative coupling of MBTH with phenols (Scheme 1) was found to be a more efficient pathway than via formation of the azo sulphone (Scheme 2).

3.2 Electronic spectral characteristics of azo merocyanines

Our investigation of the electronic spectral characteristics of azo merocyanines has focused on the following: (a) determining the spectral shifts with varying solvent polarity; (b) evaluating the influence of the azo moiety on the solvatochromism of merocyanines; and (c) formulation of a solvent polarity scale by a multiple parameter approach.

One hundred and seventy-two spectra of the six synthesised compounds in 29 solvents were recorded in the region between 320 to 780 nm. Representative spectra are shown in Figs 1-3. Wavelength maxima (λ_{max}) and extinction coefficients (ϵ) are tabulated in Table 1. All the solutes displayed a bathochromic shift (red shift), thus exhibiting positive solvatochromic behaviour. The longest-wavelength bands of the six solutes are plotted in Fig. 4. It is seen that the six solutes show a similar trend with respect to the rise and fall in λ_{max} with various solvents. Of the six solutes 2 shows the longest wavelength maximum, 580 nm in dimethyl sulphoxide. A solvent change from hexanes to dimethyl sulphoxide caused a bathochromic

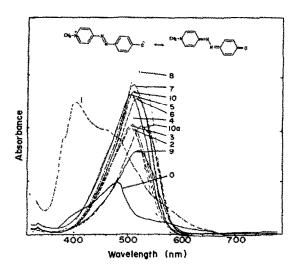


Fig. 1. Absorption spectra of 4-N-methyl-(4'-hydrazobenzoquinone)pyridone (1) in solvents 0-10a. 0 Hexanes; 1 Cyclohexane; 2 Toluene; 3 Benzene; 4 Diethyl ether; 5 1,4-Dioxane; 6 Chlorobenzene; 7 Ethyl acetate; 8 Monoglyme; 9 Chloroform; 10 Methyl acetate; 10a 1,2-Dichloroethane.

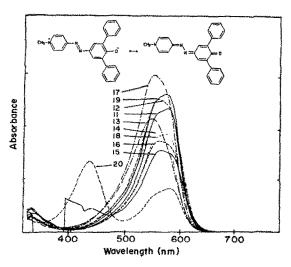


Fig. 2. Absorption spectra of 4-N-methyl-(4'-hydrazo-3'.5'-diphenylbenzoquinone)pyridone (2) in solvents 11-20. 11 Hexamethylphosphoramide; 12 Pyridine; 13 Dichloromethane; 14 2-Butanone; 15 Nitrobenzene; 16 Benzonitrile; 17 Acetone; 18 Dimethylacetamide; 19 Dimethylformamide; 20 Dimethyl sulphoxide.

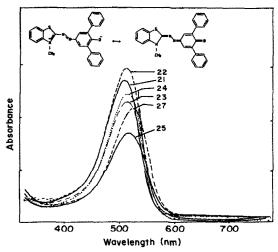


Fig. 3. Absorption spectra of N-methylbenzothiazolylazo-(3',5'-diphenyl)-4'-benzoquinone (4) in solvents 21-27. 21 Acetonitrile; 22 Nitromethane; 23 n-Propanol; 24 Ethanol; 25 Methanol; 26 Water; 27 DMPU.

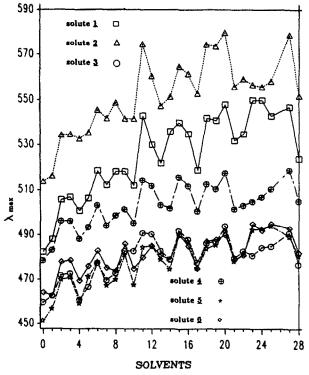


Fig. 4. Comparison of maxima of long-wavelength absorptions for solutes 1-6 in solvents 0-28.

TABLE 1 Summary of $\lambda_{\rm max}$ Values and Extinction Coefficients of Solvatochromic Dyes 1–6

	9	ಬ	15 600	19 200		18 400	19300	22 900	23 900	23 200	25 200	25 400	14 700	22 900	18 100
		λ_{\max} (nm)	462	464		478	479	469	476	483	470	474	486	474	483
:	5	ယ	18 300	19 300		17000	17400	19 100	16400	17 100	17 600	18 400	17300	15800	19 600
:		λ _{max} (nm)	462	460		472	473	461	467	478	470	473	483	470	477
	4	3	74 100	000 68		88 600	89 600	121 300	116900	118 100	122 400	125900	76 100	121 200	110400
Solute		λ _{max} (nm)	483	479	438	496	496	488	493	503	464	499	505	496	505
Sol	8	3	65 500	000 / 9		66 100	98 700	80 100	84 300	82 400	84300	83 800	63 000	74300	42 900
		λ _{max} (nm)	457	451	430	470	471	459	471	478	467	470	481	468	481
	2	w	17 900	11 000		99 200	009 / 9	87 700	91 200	90 800	103 000	104 000	52 000	009 96	53 100
		λ_{\max} (nm)	516	514	940	534	535	533	536	546	542	549	542	542	552
	_	ಟ	22 600	22 800		31900	33 400	41 500	46 200	46 100	50400	54 900	25 200	48 200	36 700
		λ_{\max} (nm)	482	412		206	207	501	206	519	512	518	518	.512	524
Solventa			0 Hexanes	Cyclohexane		Toluene	Benzene	Ether	1,4-Dioxane	Chlorobenzene	Ethyl acetate	Monoglyme	Chloroform	Methyl acetate	10a 1,2-Dichloroethane
No.			0	1		7	3	4	5	9	7	∞	6	10	10a

9 33200 504 53600 482 17600 482 15600 4 39100 502 65600 477 17800 470 17900 59000 516 62100 490 19300 490 17900 53900 512 152300 480 11920 480 18900 4 35700 512 159700 486 19300 487 20500 5 37900 513 158900 487 20900 487 20500 2 42700 518 189600 494 25500 491 20800 8 36500 501 165300 479 17600 482 23 600 5 5600 359 3100 483 14300 480 12700 3 36600 505 153700 484 18500 493 21000 3 3600 507 48700 484 18500 <	543 61400 575 76600 48 531 53000 560 85900 48
502 65 600 477 17800 477 516 62 100 490 19 300 490 512 152 300 480 11 920 480 501 179 100 478 11 970 475 512 159 700 486 19 300 487 513 158 900 487 20 900 488 518 189 600 494 25 500 491 501 165 300 479 17 600 482 503 42 300 483 14 300 480 504 48 700 481 27 200 520 507 48 700 484 18 500 493 510 40 900 485 23 200 495 520 86 700 491 49100 493	44 300 547
59 000 516 62 100 490 19 300 490 39 100 512 152 300 480 119 20 480 38 900 501 179 100 478 119 70 475 37 900 512 159 700 486 19 300 487 37 900 513 158 900 487 20 900 488 42 700 518 189 600 494 25 500 491 36 500 501 165 300 479 17 600 482 5 600 359 3 100 481 14 300 480 5 600 359 3 100 481 27 200 520 36 600 505 153 700 481 27 200 520 37 100 510 40 900 485 23 200 495 8 700 520 86 700 491 491 493	32 900 551
39 100 512 152 300 480 11920 480 38 900 501 179 100 478 11970 475 37 900 512 159 700 486 19 300 487 42 700 513 158 900 487 20 900 488 42 700 518 189 600 494 25 500 491 36 500 501 165 300 479 17 600 482 5 600 359 3 100 481 17 500 480 5 600 359 3 100 481 27 200 520 36 600 505 153 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 520 85 700 495	38 400 565
38 900 501 179 100 478 11970 475 35 700 512 159 700 486 19 300 487 37 900 513 158 900 487 20 900 488 42 700 518 189 600 494 25 500 491 36 500 501 165 300 479 17 600 482 5 600 503 42 300 483 14 300 480 5 600 359 3 100 481 27 200 520 36 600 505 153 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 8 700 8 700 491 491 491	50 400 561
35 700 512 159 700 486 19 300 487 37 900 513 158 900 487 20 900 488 42 700 518 189 600 494 25 500 491 36 500 501 165 300 479 17 600 482 5 600 359 3 100 483 14 300 480 5 600 359 3 100 481 27 200 520 36 600 505 153 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 520 86 700 491 49100 493	52 800 553
37900 513 158 900 487 20 900 488 42700 518 189 600 494 25 500 491 36 500 501 165 300 479 17 600 482 36 400 503 42 300 483 14 300 480 5 600 359 3 100 481 27 200 520 36 600 505 153 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 520 86 700 491 49100 493	45 900 574
42 700 518 189 600 494 25 500 491 36 500 501 165 300 479 17 600 482 36 400 503 42 300 483 14 300 480 5 600 359 3 100 481 27 200 520 36 600 505 153 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 520 86 700 491 49100 493	59 000 573
36 500 501 165 300 479 17 600 482 36 400 503 42 300 483 14 300 480 5 600 359 3100 481 27 200 520 36 600 505 153 700 481 27 200 520 36 300 507 48 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 520 86 700 491 49100 493	19 500 433
36 500 501 165 300 479 17 600 482 36 400 503 42 300 483 14 300 480 5 600 359 3100 81 27 200 520 36 600 505 153 700 481 27 200 520 36 300 507 48 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 8 700 491 49100 493	6 700 580
36 400 503 42 300 483 14 300 480 5 600 359 3 100 36 600 505 153 700 481 27 200 520 36 600 507 48 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 520 86 700 491 49100 493	29 900 556
36 400 503 42 300 483 14 300 480 5 600 359 3 100 81 27 200 520 36 600 505 153 700 481 27 200 520 36 300 507 48 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 8 700 491 49 100 493	559
5 600 359 3 100 36 600 505 153 700 481 27 200 520 36 300 507 48 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 40 000 520 86 700 491 49100 493	416
36 600 505 153 700 481 27 200 520 36 300 507 48 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 40 000 520 86 700 491 49100 493	46 500 367
36 300 507 48 700 484 18 500 493 37 100 510 40 900 485 23 200 495 8 700 40 000 520 86 700 491 49 100 493	41 400 557
37100 510 40900 485 23200 495 8700 40000 520 86700 491 49100 493	27 400 556
8 700 40 000 520 86 700 491 49 100 493	33 800 559
40 000 520 86 700 491 49 100 493	36 300 559
	62 800 226

^a Abbreviations: HMPA, hexamethylphosphoramide; DMF, dimethylformamide; DMSO, dimethyl sulphoxide; DMPU, 1,3-dimethyl-3,4,5,6tetrahydro-2(1H)-pyrimidone urea.

shift of 65 nm in its longest-wavelength band. For all the solutes, DMSO shows the longest-wavelength maxima.

The solvent effect on electronic absorption spectra, resulting from electronic transitions, is primarily dependent on the chromophore and the nature of the transition $(\sigma \to \sigma^*, \ n \to \sigma^*, \ \pi \to \pi^*$, and charge-transfer absorption). The electronic transitions of particular interest in this respect are $n \to \pi^*$, $\pi \to \pi^*$, and charge-transfer absorptions. A qualitative interpretation of solvent shifts is possible by considering the following factors as guides: 9,10

- (a) the momentary transition dipole moment present during the optical absorption;
- (b) the difference in permanent dipole moment between the ground state and the excited state of the solute;
- (c) the change in ground-state dipole moment of the solute induced by the solvent;
- (d) the Franck-Condon principle.

For strongly solvatochromic dyes the observed solvent shifts cannot be explained only in terms of a change in the permanent dipole moment on electronic transition ($\mu_{\rm g} \neq \mu_{\rm e}$). The effect of the surrounding solvent cage ($\mu_{\rm g} \rightarrow \mu'_{\rm g}$) on the ground state dipole moment of the solute should also be taken into consideration.³⁶⁻⁴² The dipolar solute molecules cause an electronic polarisation of the surrounding molecules, creating a so-called reaction field, which affects the dye's ground-state dipole moment $\mu_{\rm g}$.⁴² That is, the interaction of the dipolar solute molecules with this induced reaction field, due to the total dipole moment (actual and induced) of the solvent molecules, may cause an alteration of the electronic structure of the chromophore. For meropolymethine dyes, such as the positively solvatochromic merocyanine 7 described below, this implies that increasing solvent polarity should shift the electronic structure from a more polyene-like state (7a), to a more polymethine-like state (7b), and eventually to 7c, which is also a polyene-like state:

$$\begin{array}{c} R \\ N \\ N \\ R \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ R \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \\ N \\ N \end{array} \longrightarrow \begin{array}{c} R \\ N \end{array} \longrightarrow$$

Therefore, a chromophore with a polyene-like electronic structure (7a) will exhibit a bathochromic shift with increasing solvent polarity (positive solvatochromism), whereas a chromophore with a polymethine-like electronic structure (7b) will show a hypsochromic shift for the same solvent change (negative solvatochromism).⁴³

The consequences of such a change in electronic structure on the position of absorption have been calculated on the basis of valence-bond theory by Forster in 1939.⁴³ According to his calculations, an intermediate meropolymethine (7b) with equal contributions from both mesomeric structures (7a) and (7c) will have the longest-wavelength absorption.

Quantitative calculations of the solvent dependence of UV-Vis absorption spectra based on different models have been carried out by a number of workers. 44-59

Based on the direction of spectral shifts of the azo merocyanines in this study with increasing solvent polarity, it is inferred that $\mu_{\rm g}$ is lower than $\mu_{\rm e}$ for all the solutes examined. This suggests that as the solute dipole moment increases during the electronic transition, the Franck-Condon excited state is more solvated by dipole-solvent polarisation, causing a red shift (bathochromic). This implies that increasing solvent polarity shifts the electronic structure from a polyene-like state (7a) to a more polymethine-like state (7b).

Focusing our attention on the second feature, namely the influence of the azo moiety, we compare dye 1 with the iso-electronic methine dye 8. Solvent effects have been known to depend largely on differing dipolar characteristics of a molecule when it is promoted to the excited state. Depending on the change in the dipolar characteristics between the ground and excited states, three possibilities exist, as shown in Table 2.

In view of the above discussion, and also from the theoretical work on dye 8 by Benson & Murrell,⁶¹ it is inferred that 8 can be classified as a moderately dipolar dye in relatively non-polar solvents, whereas in strongly polar media it is regarded as a highly dipolar dye. The reverse

TABLE 2
Summary of the Properties of the Three Main Types of Merocyanine Dyes^{60,64}

Type	Gro	und state	Excit	Solvent-induced shift		
	Polarity	Bond length alternation	Polarity	Bond length alternation	9.	
Weakly dipolar Moderately dipolar	Low Medium	High Low	Increased	Reduced Little change	Bathochromic	
Highly dipolar	High	High	Reduced	Reduced	Hypsochromic	

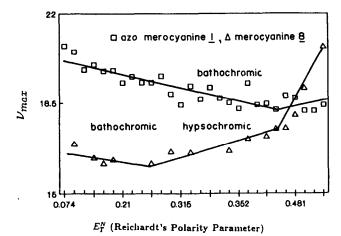


Fig. 5. Plot showing the reverse solvatochromism in 1 and 8 at different regions of solvent polarity.

solvatochromism arises from a possible change in the electronic configuration, i.e. from the quinoidal form to the benzenoid structure. Botrel *et al.* have shown that the calculated dipole moments exhibit the following evolution: $\mu_{\rm g} < \mu_{\rm e}$ in less polar solvents, and $\mu_{\rm g} > \mu_{\rm e}$ in highly polar solvents.⁶²

The effect of structural change on replacement of the —CH—CH—bridge by —N—N— is seen through comparison of the plots of spectral data for 8 and 1 vs the E_T^N parameters. 9,10 The trends observed are shown in Fig. 5, from which the following is apparent:

- (a) The merocyanine dye 8 exhibits a *bathochromic* shift in non-polar solvents ($E_T^N = 0.0-0.26$). This suggests that 8 is a weakly dipolar dye.
- (b) Dye 8 reverses its solvatochromic property in the region of higher solvent polarity ($E_T^N \ge 0.26$) and displays a hypsochromic shift, characteristic of a highly dipolar dye.
- (c) In contrast, the azo merocyanine 1 exhibits a *bathochromic* shift in the solvent polarity region $E_{\rm T}^{\rm N}=0$ –0.41; this is characteristic of a weakly dipolar dye.
- (d) Dye 1 displays a slight reversal in its solvatochromic behaviour in the region $E_T^N = 0.41-0.80$, characteristic of a moderately dipolar dye.

Figure 5 shows the complete range of spectral response of merocyanine dyes, as the —C=C— linkage is replaced by the —N=N— moiety, i.e.

Weakly dipolar → moderately dipolar (azo merocyanine, 1)

Weakly dipolar \rightarrow moderately dipolar \rightarrow highly dipolar (merocyanine, 8)

The azo merocyanine 1 is not a highly dipolar dye; rather it is a weakly

dipolar dye in the region $E_{\rm T}^{\rm N}=0$ –0.6, slowly tending towards moderately dipolar in more polar solvents with $E_{\rm T}^{\rm N}\geq 0$.6. Hence it does not show strongly hypsochromic shifts as would have been expected. A similar trend is observed for dyes 2–6.

Secondly, from Fig. 5, it is seen that 1 absorbs at shorter wavelengths than does its carbon analogue 8. Such a trend has been reported earlier by Glauert & Mann for dye 9 X = CH, $\lambda_{\text{max}}^{\text{MeOH}}$ 554 nm; X = N, $\lambda_{\text{max}}^{\text{EtOH}}$ 454 nm.⁶³

This kind of behaviour has been rationalised using perturbational theory. 60 According to Dewar's rules, an electronegative hetero-atom or an electron-withdrawing group placed at the central starred atom in 9 should give a hypsochromic shift. This reasoning can be extended to 1. However, the opposing spectral effects at the conjugating bridge containing the -N=N- group at the starred and unstarred positions are not equal. This could possibly lead to hypsochromic shifts compared with its carbon analogue. This hypsochromic shift resulting from the structural change $9a \rightarrow 9b$, or $10a \rightarrow 10b$, should not be confused with the hypsochromic shift arising from varying solvent polarity.

Thirdly, it is seen that the extent of shifts for 8 is considerably larger than for 1.

Our final objective was achieved by treating the spectral data in an iterative fashion to obtain a new polarity scale, the $\pi_{\rm azo}^*$ scale.¹⁷ The $\pi_{\rm azo}^*$ scale has been evaluated against several polarity scales and various solvato-chromic dyes. The analysis can be found in our earlier reports.^{17,18}

4 CONCLUSIONS

The azo merocyanine dyes synthesised for this study displayed strong solvatochromic characteristics. The electronic spectral evaluation of these dyes strongly suggests that with increasing solvent polarity, $\mu_{\rm g}$ becomes lower than $\mu_{\rm e}$, implying a shift in electronic structure, i.e. from a polyene-like structure to more polymethine like structure. The spectral data obtained were also used to formulate a new solvent polarity scale, the $\pi_{\rm azo}^*$ scale.

REFERENCES

- Grinvald, A., Frostig, R. D., Lieke, E. & Hildesheim, R., Physiol. Rev., 68 (1988) 1285.
- 2. Grinvald, A., Ann. Rev. Neurosci., 8 (1985) 263.
- 3. Loew, L. M., Scully, S., Simpson, L. & Waggoner, L. S., Nature, 281 (1979) 497.
- 4. Williams, D. J., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series, Vol. 233. American Chemical Society, Washington, DC, 1983.
- 5. Horie, K., Hirao, K., Keenmochi, N. & Mita, I., Makromol. Chem., Rapid Commun., 9 (1988) 267.
- 6. Winkler, J. D. & Deshayes, K., J. Amer. Chem. Soc., 109 (1987) 2190.
- 7. Takahashi, K., Komura, T. & Imanaga, H., Nippon Kagaku Kaishi, 12 (1985) 2226.
- 8. Kirk-Othmer, Encyclopaedia of Chemical Technology, 6 (1985) 122.
- 9. Reichardt, C., Solvent Effects in Organic Chemistry, 1st edn. Verlag Chemie, Weinheim, 1979.
- 10. Reichardt, C., Solvent Effects in Organic Chemistry, 2nd edn. Verlag Chemie, Weinheim, 1988.
- 11. Zerbetto, F., Monti, S. & Orlandi, G., J. Chem. Soc., Farad. Trans. 2, 80 (1984) 151.
- 12. Gibson, H. W., Tetrahedron, 77 (1977) 6789.
- 13. Brooker, L. G. S., Craig, A. C., Heseltine, D. W., Jenkins, P. W. & Lincoln, L. L., J. Amer. Chem. Soc., 87 (1965) 2443.
- 14. Benson, H. G. & Murrell, J. N., J. Chem. Soc., Farad Trans. 2, 68 (1972) 137.
- 15. Gaines, G. L., Anal. Chem., 48 (1976) 450.
- 16. Al-Hassan, K. A. & El-Bayoumi, M. A., Chem. Phys. Lett., 76 (1980) 121.
- 17. Buncel, E. & Rajagopal, S., J. Org. Chem., 54 (1989) 798.
- 18. Buncel, E. & Rajagopal, S., Acc. Chem. Res., 23 (1990) 226.
- 19. Buncel, E., Acc. Chem. Res., 8 (1975) 132.
- 20. Buncel, E., Mechanisms of Molecular Migrations, ed. B. S. Thyagarajan, Vol. 2. Wiley, New York, 1968.
- 21. Cox, R. A. & Buncel, E., The Chemistry of the Hydrazo, Azo and Azoxy Groups, ed. S. Patai. Wiley, New York, 1975.
- 22. Williams, D. L. H. & Buncel, E., *Isotopes in Organic Chemistry*, ed. E. Buncel & C. C. Lee. Elsevier, Amsterdam, 1980.
- Buncel, E., Keum, S. R., Cygler, M., Varughese, K. I. & Birnbaum, G. I., Can. J. Chem., 62 (1984) 1628.
- 24. Buncel, E. & Keum, S. R., Heterocycles, 20 (1983) 1751.
- 25. Cox, R. A. & Buncel, E., J. Amer. Chem. Soc., 97 (1975) 1871.
- 26. Buncel, E., Cox, R. A. & Dolenko, A., Tetrahedron Lett. (1975) 215.
- 27. Buncel, E. & Keum, S. R., J. Chem. Soc., Chem. Commun (1983) 579.
- 28. Hunig, S., Bernhard, G., Liptay, W. & Brenninger, W., Justus Leibigs Ann. Chem., 69 (1965) 9.
- 29. Fabian, J. & Hartmann, H., J. Mol. Struct., 27 (1965) 67.
- 30. Buncel, E. & Keum, S. R., Tetrahedron, 39 (1983) 1091.
- 31. Hunig, S. & Kobrich, G., Leibigs Ann., 617 (1958) 210.
- 32. Hunig, S. & Fritsch, K. H., Ann., 609 (1957) 143.
- 33. Hunig, S. & Balli, H., Ann., 628 (1959) 56.

- 34. Hunig, S., Geiger, H., Kaupp, G. & Kniese, W., *Justus Leibigs Ann. Chem.*, **697** (1966) 116.
- 35. Hsieh, B. R., Desilets, D. & Kazmaier, P. M., Dyes and Pigments, 14 (1990) 165.
- 36. Radeglia, R. & Dahne, S., J. Mol. Struct., 5 (1970) 339.
- 37. Scheibe, P., Schneider, S., Dorr, F. & Doltreazzo, E., Ber. Bunsenges Phys. Chem., 80 (1976) 630.
- 38. Radeglia, S. R., Z. Phys. Chem., 235 (1971) 335.
- 39. Dahne, S. & Radeglia, R., Tetrahedron, 27 (1971) 3673.
- 40. Radeglia, R., Engelhardt, G., Lippman, E., Pehk, T., Nolte, K. D. & Dahne, S., Org. Magn. Reson., 4 (1972) 571.
- 41. Wahnert, M. & Dahne, S., J. Prakt. Chem., 318 (1976) 321.
- 42. Dahne, S. & Molte, K. D., J. Chem. Soc., Chem. Commun. (1972) 1056.
- 43. Forster, Th., Z. Electrochem. Angew. Phys. Chem. (1939) 548.
- 44. Bayliss, N. S. & McRae, E. G., J. Phys. Chem., 58 (1954) 1002, 1006.
- 45. Oshika, Y., J. Phys. Soc. Japan, 9 (1954) 594.
- 46. Lippert, E., Agnew. Chem., 73 (1961) 695.
- 47. Bakshiev, N. G., Chem. Abstr., 58 (1963) 4027h.
- 48. Weigang, O. E. & Wild, D. D., J. Chem. Phys., 37 (1962) 1180.
- 49. Abe, T., Bull. Chem. Soc. Japan, 38 (1965) 1314.
- Liptay, W., Modern Quantum Chemistry. Academic Press, New York, 1965, p. 173.
- 51. Kuhn, H. & Schweig, A., Chem. Phys. Lett. (I) (1967) 255.
- Nicol, M. F., Swain, J., Shum, Y. Y., Merrin, R. & Chen, R. H. H., J. Chem. Phys., 48 (1968) 3587.
- 53. Suppan, P., J. Chem. Soc. A (1968) 3125.
- 54. Liptay, W. & Waltz, G., Z. Naturforsch, 26a (1971) 2007.
- 55. Kampas, F. J., Chem. Phys. Lett., 26 (1974) 334.
- 56. Germor, M. A., Theor. Chim. Acta, 34 (1974) 145.
- 57. McRae, E. G., J. Phys. Chem., 61 (1957) 562.
- 58. Bilot, L. & Knawski, A., Z. Naturforsch., 17a (1962) 621.
- 59. Nolte, K. D. & Dahne, S., Chem. Abstr., 87 (1977) 151529b.
- Griffiths, J., Colour and Constitution of Organic Molecules. Academic Press, London, 1976.
- 61. Benson, H. G. & Murrell, J. N., J. Chem. Soc., Faraday Trans., 68 (1972) 137.
- Botrel, A., Beuze, A. L. & Jacques, P., J. Chem. Soc., Faraday Trans. 2, 80 (1984) 1235.
- 63. Glauert, R. H. & Mann, F. G., J. Chem. Soc. (1952) 5012.
- 64. Fabian, J. & Hartmann, H., Light Absorption of Organic Colorants. Springer-Verlag, New York, 1980.